
An Online Gait Adaptation with SuperBot in Sloped Terrains

Teawon Han1, Nadeesha Ranasinghe2, Luenin Barrios3, and Wei-Min Shen4

Abstract— Among the different types of robots, modular
and self-reconfigurable robots such as SuperBot have less
limitations than their counterparts due to their versatility
of gaits and increased dynamic adaptability. This results in
a highly dexterous and adjustable robot suitable for many
environments. This however, usually comes at the expense of a
necessary human observer required to monitor and control the
robot manually resulting in a waste of power and time. Thus,
an intelligent system would be indispensable in optimzing the
behavior and control of modular and self-reconfigurable robots.
This paper presents an Intelligent Online Reconfiguration
System (IORS) which through a combination of learning and
reasoning, increases the efficiency in control and movement
of the modular and self-reconfigurable robot called Superbot.
Using this system, Superbot is able to learn and choose the
best gait automatically by sensing its current environment (e.g.,
friction or slope). As a result, the IORS implementation in
SuperBot achieves: 1) correct slope gradient sensing, 2) best gait
learning to traverse different slopes, and 3) rational decision
making for choosing the best gait.

I. INTRODUCTION

In general, robots are designed with functional or en-
vironmental considerations in mind. The area of deploye-
ment and the robot’s task requirements in that environment
drive the physical design of the robot. Once the robot is
manufactured and programmed, it would have only those
capabilities sufficiently required to perform its task. This
inexorably leads to limitations in hardware and software
wherein activities or actions outside the scope of the robot’s
purpose or abilities results in either total failure or decreased
unsatisfactory performance. Here, limitations in hardware
and software means ”Does the robot have any gaits to
move in the encountered environment?” and ”Does the robot
have intelligence to choose appropriate gaits depending on
the environment?” Modular and self-reconfigurable robots
such as SuperBot can overcome the hardware limitation
by changing their configurations [1]. For example, Super-
bot [2] has several gaits with each one being suitable to
different types of tasks. The caterpillar gait of Superbot
can go through pipes, but its locomotion speed is slow

*This work was not supported by any organization
1T. Han is with Information Sciences Institute, The University of South-

ern California, Marina Del Rey, CA 90292, USA teawonhan at
gmail.com

2N. Ranasinghe is with Information Sciences Institute, The University of
Southern California, Marina Del Rey, CA 90292, USA nadeesha at
isi.edu

3L. Barrios is with Information Sciences Institute, The University of
Southern California, Marina Del Rey, CA 90292, USA lueninba at
usc.edu

4Wei-Min Shen is a research associate professor of Computer Science
department and a project leader of Information Sciences Institute at The
University of Southern California shen at isi.edu

whereas the rollingtrack gait moves fast on flat ground, but
is susceptible to the gradient of the slope[3]. However, there
are still software limitations to consider. Even if the robot
has a gait that operates well in a particular environment,
if the appropriate operation (i.e., a condition-action pair)
was not pre-programmed, then the robot will not be able
to adequately select it. There are two possible solutions. The
first method requires the introduction of a human operator
who changes the gait using a remote control. This, of course,
is not a permanent solution because of the inefficiency
of redundant sensing, control, and communication which
ineluctably results in power loss and decreased performance;
the more a robot uses power, the less it can move. In addition,
monitoring conditions is limited when the exploration is
conducted underwater, underground, or on other planets. The
second method is to uitlize the pre-programming of a lot of
predictatble condition and action pairs to choose the proper
gait. In 2004, a research team from the National Institute of
Advanced Industrial Science and Technology (AIST) tried
to make M-TRANII [7] adapt to various ground conditions
(frictions, gradients of slope) by transforming from a 4-
legged to an H-shaped robot. However, M-TRANII could
only transform its shape if a given condition was satisfied.
In other words, M-TRANII cannot recognize and overcome
unexpected conditions. Therefore, pre-programmed pairs of
conditions and actions are not enough to move in real-
world environments because it is impossible to predict all
possible conditions the robot might encounter. However,
taking a modular and self-reconfigurable robot and providing
it with its own decision making through the application of
an intelligent and cognitive system would endow it with the
capabilities required to overcome many of these obstacles.
Intelligent cognitive systems such as Game Theory, SOAR,
and Graphical Cognitive Architecture, have been researched
and applied in various fields. Game theory itself has been
applied in several U.S. territory guard systems to prevent
terror attacks; a well known example is ARMOR[4] which
schedules security check-points at the Los Angeles airport.
SOAR supported an air traffic control task[5] and the Cogni-
tive Graphical Architecture was used to solve several prob-
lems, e.g., SLAM(simultaneous localization and mapping)
with path planning of robots [6] and bridging dichotomie
for a virtual human [8]. Here, the challenge of intelligent
cognitive systems is learning and reasoning from scratch
with only noisy data. The challenge is further compounded
in modular and self-reconfigurable robots because the sensor
data includes a wide range of noise discrepancies depending
on the different configurations of the modules. For example,
there is no sensor to measure the gradient of slope directly,

so several modules must be used. Despite the propinquity
of the modules, depending on the robot’s configuration, the
noise level for each module can be extremely disparate.

This paper shows how with the inclusion of an Intelligent
Online Reconfiguration System (IORS), Superbot is able to
deal with these challenges to learn and choose the best
gait automatically given three gaits and different sloped
environments. IORS allows the robot to be able to (1)
recognize different sloped environments despite disparate
noise levels, (2) learn the preference for each gait in different
environments and (3) make an internal decision regarding the
best gait for a particular environment.

II. RELATED WORK

A. Different Rollingtrack gaits of SuperBot

Three different kinds of rollingtrack gaits were used to test
IORS. These were chosen because rollingtrack gaits provide
fairly fast locomotion and transform shapes without lots of
effort and obviate the need for additional docking actions.
The rollingtrack configuration was inspired by Polynomial
Robotics Laboratory at the Information Sicences Institute at
the University of Southern California in 2007, and Jimmy
Sastra et al [10], also analyzed about dynamic rolling for
a modular loop robot. The rollingtrack consists of six Su-
perBot modules. The principle of the gait’s movement is
that changing the center of gravity by reconfiguring the
robot’s shape into a squeezed hexagon results in a forward
motion[3]. While the rollingtrack is traveling, each module
checks a value of its accelerometer to find its orientation and
change its configuration following a given rule (sets of state-
action). Previously, in [3] and [9], Superbot did not recognize
its environment and thus was unable to adapt accordingly.
It simply obeyed the specified gait rule. Depending on
the given rule, the pattern of movement (gait) is different
and has uniquely different characteristics. For example, the
height of the Climbing rollingTrack gait is lower than the
standard circular rollingtrack. Its movement speed is also
slower, but it can climb steeper slopes. In this paper, a step
is a process between transformations, and three gaits are
used, namely: rollingtrack high, climbing rollingtrack, and
the standard circular rollingtrack. These are abbreviated as
rt high, rt low, and rt circle respectively. Sequential positions
of a step for rt high are shown in Figure 1, (a)-(b)-(c),
for rt low sequential positions of a step are shown in (d)-
(e)-(f), and for rt circle it is simply (a). rt high and rt low
consist of three configurations, and the transformations must
occur six times for a forward roll[3]. In previous works, not
only was Superbot unable to sense its environment, it was
also incapable of choosing its gait automatically. Therefore,
whenever the robot encountered unexpected environments
such as steep slopes, it became stuck and unable to make any
further forward progress. However, with IORS, Superbot can
sense the environment to learn and choose the most suitable
and appropriate gait without any outside human interference.

Fig. 1. Three different types of rollingtrack gaits: M0 ∼ M5 represent the
six modules. θs is 5◦ gradient of the slope, and θ1 and θ2 represent the
angles which the accelerometor sensor of M5 and M4 detect respectively.
During a step, rt high and rt circle do not have a module guaranteed to
be parallel to the slope, whereas rt low does. The accelerometer sensor is
located on the red part of a module.

B. Two purposes of 3D Accelerometor Sensor in SuperBot

In [3] and [9], the accelerometer sensor was used to
recognize each module’s orientation. This is useful in de-
veloping various movement patterns(gaits) by programming
different pairs of conditions and actions. For example, if
the orientation of a module in the three axes has some set
of accelerometer values, namely: x=A1, y=A2, and z=A3,
then we can order the module into a different orientation
by commanding the three motors to new motor angles:
motor1=θ1, motor2=θ2, and motor3=θ3. In this paper we
propose that the accelerometer sensor can be used to rec-
ognize the gradient of slopes by using the same technique
as analyzing tilt. Figure. 2 shows the configuration of the
three axes in a SuperBot module and how to calculate the
slope gradient. In a step of movement, the accelerometor
data obtained from a module which is parallel to the slope
is read. For example, when the gait is rt low, the slope is
detected by reading the accelerometor sensor of the module
whose position is the same as M2 in (f) of Figure 1.

Fig. 2. Detection of slope gradient using accelerometor sensor in SuperBot:
acc y and acc z represent sensed accelerometor data on the y and z
axis respectively. The data on acc y changes based on θ according to
′acc y = 1G×−cos(θ)′ which is the same as equation (1). Therefore, we
can use the acc y to calculate gradients of slopes, i.e., when θ is 5◦, acc y
is -0.9962.

III. THE APPROACH OF INTELLIGENT ONLINE
RECONFIGURATION SYSTEM (IORS)

In the real world, environments possess many features
such as slope and friction. To use IORS, a specified number
of selected gaits is provided to the robot which is then placed
in an environment composed of different features. For the
nonce, we deal exclusively with different slope gradients.
Under such conditions, IORS is executed iteratively using
the following four steps: (1) recognize the feature of the
environment, i.e., slope gradient (2) semi-learning the likeli-
hood of the accelerometer sensor, (3) learning the preference
of each gait under different features and (4) selection of the
best gait having the highest preference for the recognized
feature. In this paper, the robot is given three gaits, namely
rt high, rt low, and rt circle, and features of the environment
consist of various slope gradients. Under these coditions, the
focus is on how fast SuperBot can overcome different slope
gradients using IORS.

A. Recognition of the gradient of slope with three gaits

To recognize the slope, two different types of data are
used: sensed data from the accelerometer sensor on the y
axis as discussed in the Section II-B and time per step of
gait. For example, the time per step of rt high is the time(sec)
during which Superbot moves from (a) to (c) in Fig. 1. For
rt low, recognizing the slope’s gradient can be calculated
directly from the accelerometer data because at least one
module is guaranteed to impinge the environment fully and
be parallel to the slope at each step. This is shown in Fig. 1
(d), (e), and (f). For the remaining two gaits, such a condition
is not guaranteed. Therefore, the the time per step is used
for rt high and rt circle. Regardless of the method used, the
sensed data includes uncertainties which arise from noise in
the sensor. To overcome these uncertainties, the sensed data
is converted to a Gaussian distribution as shown in Fig. 3.

Fig. 3. The process of converting the sensed data to Gaussian distribution
of slope: S is sensed data: time per step or accelerometer data on y axis, L
is the likelihood for each slope’s gradient, and ds is the distribution for the
gradient of each slope.

For the Gaussian distribution, there are two likelihood
tables, table I and table II each consisting of pairs of

mean and standard deviation values for each slope gradient
considered, e.g., downhill: -1, flat: 0, and uphill: 1∼20
degree. The results for the data in table I and table II is
the data experimentally obtained on the accelerometer sensor
for the y axis and the shortest time per step which was
obtained from pre-experiments in simulation. Using this data,
the values for both tables was initialized using equation (1)
for the mean, and equation (2) for the standard deviation
differences between neighbors’ mean values.

TABLE I
LIKELIHOOD-TABLE FOR ROLLINGTRACK LOW

A gradient mean standard deviation
of slope(θ) µ1(θ) σ1(θ)

-1 -1.0102 0.0072
0 -1.000 0.0002
1 -0.9998 0.0002
...
19 -0.9397 0.0029
20 -0.9336 0.0029

TABLE II
LIKELIHOOD-TABLE FOR ROLLINGTRACK HIGH

A gradient mean standard deviation
of slope(θ) µ2(θ) σ2(θ)

-1 0.1 0.3514
0 0.597 0.0219
1 0.628 0.0358
...
8 1.312 0.1181
9 2.5 0.8400
...
19 2.5 0.8400
20 2.5 0.8400

B. Semi-Learning likelihood of sensor by Mutual Expecta-
tion and Correction

In table I and II, the initialized values are approximately
correct, but should be further adjusted to the current status of
the environment and sensors. This is because if the sensor’s
calibration is incorrect or unexpected factors arise, e.g., wind
blows too hard, then the initialized likelihood of rt low(µ1,
σ1) or rt high (µ2, σ2) would not be helpful anymore in
determining an accurate distribution of the slope.

mean(θ) =−cos(θ),−1≤ θ ≤ 20 (1)

std(θ) =
√
((A)2 +(B)2)/2 (2)

A = mean(θ −1)−mean(θ)
B = mean(θ +1)−mean(θ)

Therefore, a simple technique called Mutual Expectation
and Correction (MEC) is used. As shown in Fig. 3, pairs of
mean and standard deviation are a likelihood Li

j; i is an index
of step, j is a gradient of slope -1≤ j≤20, and are used to get
Gaussian distributions of each slope gradient (dsi

j). The MEC

runs based on two assumptions, A1: likelihood is perfect and
A2: sensed data is perfect. The distribution of the gradient
of a slope is obtained by assuming A1, and the likelihood
is updated (or adjusted according to the likelihood of sensed
data) under A2 in every step as shown in table III.

TABLE III
PSEUDO CODE FOR UPDATING LIKELIHOOD OF SENSOR

/* Initialization of Likelihood Start */
/* This part is called only one time when the robot is deployed */
For j from -1 to 20

L0
j = {(µ1(j),σ1(j))0 in table I, (µ2(j),σ2(j))0) in table II}

/* where Li
j is the likelihood of a slope gradient(j) at a step(i) */

End for
i = i+1;
/* Initialization of Likelihood End */

/* Converting Sensed data to Distribution of slope Start (figure 3) */
/* The below is called in every step i */
If current gait == rt low then

si = accelerometer sensor data on y axis;
else

If time per a step < threshold then
si = time per a step;

else
/* when the robot is stuck or rolling back(fail) */

si = threshold high;
/* threshold high is the maximum time in a step which is bigger than

the maximum time in a step of rt low : 2.5 seconds */
End if

End if
For j from -1 to 20

If current gait == rt low then
dsi

j = fg(si, µ1(j), σ1(j))i;
else

dsi
j = fg(si, µ2(j), σ2(j))i;

End for
dsi

j = Normalize(dsi
j);

/* Converting Sensed data to Distribution of slope End */

/* Updating Likelihood of Sensor by MEC Start */
θmax =−1;
For j from -1 to 20

If dsi
θmax

< dsi
j then

θmax = j;
End if

End for
Equation(3) with parameters: i, θmax;
/* Updating Likelihood of Sensor by MEC End */

mean(θmax)
new =W i× (si−mean(θmax))+mean(θmax) (3)

where W i = dsi−1
j ×dsi

j; j = θmax

The more a robot experiences, the more information it
gets. Obviously, if a robot gets more information in several
steps, it will be able to recognize more accurately. Therefore,
Bayes’ Rule (Posterior ' Likelihood × Prior) is used to
recognize the gradient of a slope more precisely by following
equation (4) and figure (4). The distribution of belief at slope
j in i step (dbi

j) means with how much confidence a robot
believes what the gradient of a slope is.

dbi
j = η [(dsi

j×W)×dbi−1
j],−1≤ j ≤ 20 (4)

where η [...] means normalization of [...], and W is the same
value as the one in equation (3).

Fig. 4. The Bayesian network for the distribution of belief for continuous
steps

C. Learning the preference of each gait for each feature
So far, we have considered how to recognize an environ-

ment’s feature correctly. The next step, perforce, is to focus
on learning the preference of each gait for each feature and
to make a rational decision that chooses the best gait. Table
IV called the decision-table maintains these preferences. The
decision-table consists of the gait in columns and the feature
in rows. The value in the table is the time(sec) per step
of each gait, and it is updated by equation (4) and (5) in
every step as shown in Table V; t lowi

j and t highi
j are time

per step i of each gait at recognized slope j where j is
δ −1≤ j ≤ δ +1; δ is equal to j of dbi

j which is equal
to MAX(dbi

j) with −1≤ j ≤ 20.

TABLE IV
DECISION-TABLE

A gradient rollingtrack rollingtrack
of slope low high

-1 t lowi
−1 t highi

−1
0 t lowi

0 t highi
0

1 t lowi
1 t highi

1
... t lowi

j t highi
j

19 t lowi
19 t highi

19
20 t lowi

20 t highi
20

The reason for the omission of rollingtrack circle
(rt circle) from table IV is that rt circle can be faster than the
other gaits if and only if the slope is downhill. In addition,
rt circle always requires a few seconds to be faster than
rt high even on downhills. Therefore, rt circle is selected
if and only if the time per step of rt high is less than
threshold low which is the shortest time in a step of rt high
on a slope of 0◦(flat). We set the threshold low to 0.588 sec.

t lowi
j = 0.5× (rt low(dbi

j)×W + t lowi−1
j) (4)

t highi
j = 0.5× (rt high(dbi

j)×W + t highi−1
j) (5)

where δ −1≤ j ≤ δ +1, and W is the same value as in an
equation (3).

TABLE V
PSEUDO CODE FOR UPDATING DECISION-TABLE

/* Initialization of Decision-table Start */
/* This part is called only one time when the robot is deployed */
i=0;
For j from -1 to 20

t low0
j = 0.001;

t high0
j = 0.001;

End for
i = i+1;
/* Initialization of Decision-table End */

/* Updating Decision-table Start */
/* This part is called in every step i */
δmax =−1;
For j from -1 to 20

If current gait == rt low then
If rt low(dbi

δmax
) < rt low(dbi

j) then
δmax = j;

End if
else

If rt high(dbi
δmax

) < rt high(dbi
j) then

δmax = j;
End if

End if
End for
If current gait == rt low then

Equation (4) with parameters (i, δmax);
Else

Equation (5) with parameters (i, δmax);
End if
/* Updating Decision-table End */

D. Choosing the best gait

In this paper, the best gait is defined as the one which
will result in the fastest forward movement for a particular
environment. The decision table maintains the seconds per
step of movement., Thus, for every step, the robot looks up
values in the decision-table using equations (6) and (7) which
together define the negative-preference of rt low and rt high
respectively. The robot then compares the two negative-
preferences, and chooses the gait whose value is smallest.

ρrt low =
20

∑
j=−1

(dbi
j× t lowi

j) (6)

ρrt high =
20

∑
j=−1

(dbi
j× t highi

j) (7)

IV. EXPERIMENTAL RESULTS

For test purposes, six Superbot modular robots were used
utilizing three given gaits (rt high, rt low, and rt circle) in
environments with different slope gradients(−20◦∼20◦). The
simulation physics were all performed using the Open Dy-
namic Engine(ODE). As previously mentioned, the challenge
involves learning to select the best gait on a recognized
environment. Figure 5 shows the shortest time per step at
different slope gradients assuming Superbot is not allowed
to change its gait; red (rt high), blue(rt low), and green
(rt circle) lines are representing the shortest time per a step
at each gradient of slope when Superbot dosen’t change its
gait; dotted black-line is showing the shortest time per a step

with choosing an optimized gait at each gradient of slope.
For example, if Superbot uses rt high, the maximum slope
gradient it can climb is about 9◦. In other words, a fixed-
gait rollingtrack would not be able to travel through this
environment, or it would be very slow it rt low is used all
the time.

Fig. 5. The shortest time per step of each gait at different slope gradients in
moving 11.5m. Without IORS, rt circle, rt high, and rt low can only move
in slope ranges of: [−20∼−2], [−20∼ 8], and [−20∼ 20] respectively.

A. Experimental Setup

As shown in Figure 6, the test environment is varied and
includes diverse slope gradients of 0◦ flat, 5◦ and 13◦ uphill,
and −14◦ downhill. The reason two different uphill gradients
were chosen is that both rt high and rt low can climb a
5◦slope, but only rt low can overcome a 13◦ slope. Initially
the robot has neither information anent its environment nor
preferences of gaits for different slope gradients. The initial
gait is set to rt high and the robot begins to sense its
environment, learning and choosing the best gait in every
step. Through experimentation, the aim is to show if IORS
can help SuperBot independently and simultaneously learn
and choose the best gait.

Fig. 6. The setting of experimental environment .

B. Experimental Results

In two continuous trials, comparisons are made of the best
gait chosen by Superbot and the optimal gait chosen by a
human for each slope gradient. Trial #1 and trial #2 refer to
first and second executions. If Superbot learns the best gait
correctly, the result of trial #2 should be better than that of
trial #1. Table VI shows the number of times Superbot chose
each gait while traversing each slope. In the table, OPT is the
optimal gait chosen by a human for the slope, and Incorrect

is the number of chosen gaits which are different from the
optimal gait.

TABLE VI
THE RESULTS OF THE CHOSEN GAIT AT EACH GRADIENT OF SLOPE

Flat Uphill Flat Uphill Downhill
(0◦) (5◦) (0◦) (13◦) (−14◦)

OPT rt high rt high rt high rt low rt circle
===== ===== Trial #1 ===== ====

- - - 1stuck,2fails -
rt high 7 12 20 6 7
rt low 0 2 0 24 3

rt circle 0 0 0 0 11
Incorrect 0 2 0 6 10

Steps 7 14 20 30 21
===== ===== Trial #2 ===== ====

- - - 1 stuck -
rt high 7 13 18 2 3
rt low 0 1 2 15 1

rt circle 0 0 0 0 11
Incorrect 0 1 2 2 4

Steps 7 14 20 17 16

The total number of incorrect choices is reduced from 18
in trial #1 to 9 in trial #2. In addition, the total number
of steps has also decreased from 92 in trial #1 to 74 in
trial #2. Cleary, trial #2 is faster than trial #1 as show in
Figure 7. The results confirm that using IORS, the more
Superbot experiences, the better it will be able to learn and
select the best gait. A video of IORS test is available at
http://youtu.be/nxSt0egp2XI.

Fig. 7. The time taken for both first and second trials of the intelligent
SuperBot to traverse different slope gradients. Blue bar and red bar represent
first trial and second trial respectively. At the slope 13◦, taken time is
reduced significantly after more learning.

V. DISCUSSION & FUTURE WORK
This paper presented simultaneous learning and reasoning

in choosing the best gait based on environment without
human interruptions. IORS filters noises from the sensed data
and learns the perference of each gait for different types
of environment, then chooses the best gait autonomously.
Due to using probability with Bayes’ rule, the modular robot
doesn’t have to maintain previous sensed data or histories of
decisions. Strictly speaking, IORS is giving modular robot
a partial intelligence to make an own decision because a

requisited pre-condition should be satisfied: gaits and the
sensible method corresponded with environment should be
given. Here, three gaits and time or acceleration which is
representiable to gradients of slope were given. However,
IORS is efficient for a modular robot to overcome various
environments. Rather than pre-programming condition-action
pairs, the robot autonomously learns and makes a rational
decision to choose the best gait from experiences as shown
in Table VI and Figure 7.

To make this technique more robust, we will consider a
definition of the best gait. Here, the definition is the gait taken
the shortest time in a step. However, depending on types of
mission or robot, different hueristics (definition of the best
gait) should be chosen. One of possible idea is changing the
hueristic based on robot’s battery status, e.g. if the current
of battery is lower than threshold value, then change the
hueristic from speed to power. We plan to achieve this by
maintaining another decision table to choose a hueristic.

ACKNOWLEDGMENT
We would like to thank the reviewers & USC PRL group.

REFERENCES

[1] Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll,
Hod Lipson, Eric Klavins, and Gregory S. Chirikjian., Modular Self-
Reconfigurable Robot Systems – Challenges and Opportunities for the
Future, IEEE Robotics and Autonomation Magazine, March():4353,
2007.

[2] Behnam Salemi, Mark Moll, and Wei-Min Shen., SUPERBOT: A De-
ployable, Multi-Functional, and Modular Self-Reconfigurable Robotic
System. In Proc. 2006 IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, Beijing, China, October 2006.

[3] Harris Chiu, Michael Rubenstein, and Wei-Min Shen., Multifunc-
tional SuperBot with Rolling Track Configuration. In Proc. 2007
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, San Diego,
CA, November 2007. IROS 2007 Workshop on Self-Reconfigurable
Robots, Systems & Applications.

[4] James Pita, Manish Jain, Craig Western, Christopher Portway, Milind
Tambe, Fernando Ordonez, Sarit Kraus, and Praveen Paruchuri., De-
ployed ARMOR protection: The application of a game-theoretic model
for security at the Los Angeles International Airport. In AAMAS 2008.

[5] Chong, R.S., Wray, R.E. Inheriting constraint in hybrid cognitive
architectures: Appyling the EASE architecture to performance and
learning in a simplified air traffic control task. In K. Gluck and R.
Pew, eds, Modeling Human Behavior with Integrated Cognitive Archi-
tectures: Comparison, Evaluation, and Validation, 237–304. Lawrence
Erlbaum Associates, 2005.

[6] J. Chen, J., Demski, A., Han, T., Morency, L-P., Pynadath, P., Rafidi,
N. & Rosenbloom, P. S. Fusing symbolic and decision-theoretic
problem solving + perception in a graphical cognitive architecture.
Proceedings of the Second International Conference on Biologically
Inspired Cognitive Architectures, 2011.

[7] Akiya Kamimura, Haruhisa Kurokawa, Eiichi Yoshida, Kohji Tomita
and Shigeru Kokaji, & Satoshi Murata, Distributed Adaptive Loco-
motion by a Modular Robotic System, M-TRAN II (From Local
Adaptation to Global Coodinated Motion using CPG Controllers),
Proceedings of 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS2004), pp. 2370-2377, 2004.

[8] Rosenbloom, P. S. (2011), Bridging dichotomies in cognitive architec-
tures for virtual humans, Proceedings of the AAAI Fall Symposium
on Advances in Cognitive Systems.

[9] Wei-Min Shen, Harris Chiu, Michael Rubenstein, and Behnam Salemi.
Rolling and Climbing by the Multifunctional SuperBot Reconfigurable
Robotic System. In Proc. Space Technology and Applications Intl.
Forum (STAIF-08), AIP Conference Proceedings No. 969, American
Institute of Physics, pp. 839848, Melville, NY, February 2008.

[10] Jimmy Sastra, Sachin Chitta & Mark Yim. Dynamic Rolling for a
Modular Loop Robot. The International Journal of Robotics Research
2009 28: 758-773.

